Corso di Laurea in Informatica e Tecnologie per la Produzione del Software

Esame di Analisi dei dati per l'ingegneria del software

6 Giugno 2012

Esercizio 1 (7 punti)

Un dado simmetrico viene lanciato 2 volte; siano X_1 il numero di lanci con esito uguale a 1 e X il numero di lanci con esito pari.

- Calcolare $\mathcal{P}(\min\{X_1, X\} = 0)$ e $\mathcal{P}(\max\{X_1, X\} = 2)$.
- Stabilire se gli eventi $\{X_1=1\}$ e $\{X=1\}$ sono indipendenti.

- Esercizio 2 (5 punti)

Siano $X, Y \sim N(0, 2)$ tali che E[XY] = -1 e sia $Z \sim N(3, 4)$ indipendente da X e da Y.

- Calcolare $E[(2X-Z)^2]$ e Var(1+X-2Y+Z).
- Costruire a partire da $X, Y \in \mathbb{Z}$ una V.A. χ_2^2 .

Esercizio 3 (5 punti)

Un esperimento descritto da una v.a. X assume i valori $\{a,b,c\}$. Viene ripetuto 25 volte ottenendo

$$\{a, a, b, c, c, c, a, b, a, a, b, c, a, a, a, a, a, a, b, c, b, c, c, a, a, a\}$$

Verificare a livello $\alpha=0,1$ l'ipotesi

$$\mathcal{H}_0: \quad \mathcal{P}(X=a) = \frac{1}{2} \quad \mathcal{P}(X=b) = \frac{1}{6} \quad \mathcal{P}(X=c) = \frac{1}{3}$$

contro l'ipotesi alternativa

$$\mathcal{H}_1: \quad \mathcal{P}(X=a) \neq \frac{1}{2} \quad \text{oppure} \quad \mathcal{P}(X=b) \neq \frac{1}{6}.$$

Esercizio 4 (7 punti)

Sia $X \sim P(\lambda)$ e sia Y = X(X-1). Sia inoltre $\{0,0,0,2,2\}$ un campione associato a Y. Stimare λ .